Newer
Older
Florian Obersteiner
committed
from enum import IntEnum
"""Default number format for output. Provides the `fmt` parameter of :func:`numpy.savetxt` internally."""
DEFAULT_FIELD_DELIM = ","
"""Default field delimiter"""
DEFAULT_SCALE_FACTOR = 1.0
"""Default variable scale factor"""
DEFAULT_MISSING_VALUE = -9999.0
"""Default variable missing value"""
"""ICARTT File Format Indices (FFI)"""
Christoph Knote
committed
"""ICARTT Variable Types"""
IndependentVariable = 1
IndependentBoundedVariable = 2
AuxiliaryVariable = 3
DependentVariable = 4
def __init__(self, ivar, dvars):
self.varnames = [ivar.shortname] + [x for x in dvars]
Christoph Knote
committed
self.missingValues = {x: dvars[x].miss for x in dvars}
self.missingValues.update({self.ivarname: ivar.miss})
self.default_dtype = np.float64
self.dtypes = [(name, self.default_dtype) for name in self.varnames]
def __getitem__(self, s=slice(None)):
# we can only slice if we have something, so
if self.data is not None:
return self.data[s]
# returns None implicitly if self.data is None
def addFromTxt(self, f, delimiter, max_rows=None):
Christoph Knote
committed
# genfromtxt would warn if file is empty. We do not want that.
with warnings.catch_warnings():
warnings.simplefilter("ignore")
newData = np.genfromtxt(
f,
names=self.varnames,
dtype=self.dtypes,
missing_values=self.missingValues,
usemask=True,
Christoph Knote
committed
max_rows=max_rows,
deletechars="",
).filled(fill_value=np.nan)
self.add(newData)
def add(self, newData):
"""(bulk) add data, providing a (structured) numpy array.
Christoph Knote
committed
Array has to have shape [ (ivar, dvar, dvar, ...), ... ],
missing values have to be set to :obj:`numpy.nan`.
Christoph Knote
committed
:param newData: data to be added
:type newData: numpy.ndarray
"""
if not isinstance(newData, np.ndarray):
raise TypeError("Input data needs to be numpy ndarray.")
Christoph Knote
committed
if newData.dtype.names is None:
try:
newData.dtype = [(name, newData.dtype) for name in self.varnames]
except:
ValueError(
Christoph Knote
committed
"Could not assign names to data structure, are you providing an array containing all variables?"
)
Christoph Knote
committed
self.data = newData
Christoph Knote
committed
self.data = np.append(self.data, newData)
Christoph Knote
committed
for k, miss in self.missingValues.items():
def write(
self, f=sys.stdout, fmt=DEFAULT_NUM_FORMAT, delimiter=DEFAULT_FIELD_DELIM
):
# TODO the fact that we need to clean before writing suggests we need to be more careful what to "add" in the first place!
# single line data is 0D if passed as tuple, savetxt cannot work with 0D. Make 1D.
Christoph Knote
committed
if d.ndim == 0:
d = np.array([d])
# need to squeeze extra dimension added for one liners added as np.array
if len(d.shape) == 2:
d = np.squeeze(d, axis=1)
np.savetxt(f, d, fmt=fmt, delimiter=delimiter)
class DataStore2110(collections.UserDict):
def __init__(self, ivar, ibvar, auxvars, dvars):
self.ivarname = ivar.shortname
self.ibvarname = ibvar.shortname
self.auxvarnames = [x for x in auxvars]
self.dvarnames = [x for x in dvars]
Christoph Knote
committed
self.missingValues = {x: dvars[x].miss for x in dvars}
self.missingValues.update({x: auxvars[x].miss for x in auxvars})
self.missingValues.update({self.ibvarname: ibvar.miss})
self.missingValues.update({self.ivarname: ivar.miss})
self.nauxvarname = self.auxvarnames[0] # convention!
self.ivar = ivar
self.auxvars = auxvars
self.ibvar = ibvar
self.dvars = dvars
def __getitem__(self, s=slice(None)):
# we can only slice if we have something, so
if self.data is not None:
return self.data[s]
# returns None implicitly if self.data is None
def addFromTxt(self, f, delimiter):
Christoph Knote
committed
while f:
auxds = DataStore1001(self.ivar, self.auxvars)
depds = DataStore1001(self.ibvar, self.dvars)
try:
auxds.addFromTxt(f, delimiter, max_rows=1)
Christoph Knote
committed
except:
# we are at the end of the file if this happens
break
ndeprows = int(auxds[self.nauxvarname])
# it is indeed possible to have zero dependent data lines
if ndeprows > 0:
try:
depds.addFromTxt(f, delimiter, max_rows=ndeprows)
except:
raise IOError("Could not read dependent data lines.")
Christoph Knote
committed
ivarValue = float(auxds[self.ivar.shortname])
self.data[ivarValue] = {"AUX": auxds, "DEP": depds}
Christoph Knote
committed
def add(self, newAuxData, newDepData):
"""(bulk) add data, providing (structured) numpy arrays for both the auxiliary and dependent data line(s)
for a given ivar value.
Arrays have to have shape [ (ivar, auxvar, auxvar, ...) ] and
[ (ibvar, depvar, depvar, ...), ... ] for auxiliary and dependent data line(s), respectively.
missing values have to be set to :obj:`numpy.nan`.
:param newAuxData: auxiliary data line to be added
:type newAuxData: numpy.ndarray
:param newDepData: auxiliary data line(s) to be added
:type newDepData: numpy.ndarray
"""
Christoph Knote
committed
auxds = DataStore1001(self.ivar, self.auxvars)
depds = DataStore1001(self.ibvar, self.dvars)
Christoph Knote
committed
auxds.add(newAuxData)
depds.add(newDepData)
Christoph Knote
committed
ivarValue = float(auxds[self.ivar.shortname])
self.data[ivarValue] = {"AUX": auxds, "DEP": depds}
self,
f=sys.stdout,
fmt_aux=DEFAULT_NUM_FORMAT,
fmt_dep=DEFAULT_NUM_FORMAT,
delimiter_aux=DEFAULT_FIELD_DELIM,
delimiter_dep=DEFAULT_FIELD_DELIM,
for ivarvalue in self.data:
self.data[ivarvalue]["AUX"].write(f, fmt=fmt_aux, delimiter=delimiter_aux)
self.data[ivarvalue]["DEP"].write(f, fmt=fmt_dep, delimiter=delimiter_dep)
class KeywordComment:
self.key = key
self.naAllowed = naAllowed
self.data = []
def append(self, data):
self.data.append(data)
return self.key + ": " + d
"""calculates the number of lines in the normal comments section"""
# shortnames line is always there:
n = 1
# freeform comment might or might not be there:
n += sum(len(s.split("\n")) for s in self.freeform)
# tagged comments have at least one line:
for k in self.keywords.values():
n += sum(len(s.split("\n")) for s in k.data) or 1
return (
self.freeform + [str(s) for s in self.keywords.values()] + [self.shortnames]
)
def ingest(self, raw):
# last line is always shortname
self.shortnames = raw.pop()
# per standard: The free-form text section consists of the lines
# between the beginning of the normal comments section
# and the first required keyword. [...] The required “KEYWORD: value” pairs block
# starts with the line that begins with the first required keyword
# and must include all required “KEYWORD: value” pairs
# in the order listed in the ICARTT documentation.
if possibleKeyword in self.keywords or re.match(
"R[a-zA-Z0-9]{1,2}[ ]*", possibleKeyword
):
if not currentKeyword in self.keywords: # for the revisions only...
self.keywords[currentKeyword] = KeywordComment(
currentKeyword, False
)
self.keywords[currentKeyword].append(
l.replace(l.split(":")[0] + ":", "").strip()
)
self.keywords[currentKeyword].append(l.strip())
f"Normal comments: required keyword {str(key)} is missing."
"PI_CONTACT_INFO",
"PLATFORM",
"LOCATION",
"ASSOCIATED_DATA",
"INSTRUMENT_INFO",
"DATA_INFO",
"UNCERTAINTY",
"ULOD_FLAG",
"ULOD_VALUE",
"LLOD_FLAG",
"LLOD_VALUE",
"DM_CONTACT_INFO",
"PROJECT_INFO",
"STIPULATIONS_ON_USE",
"OTHER_COMMENTS",
self.keywords = {k: KeywordComment(k, True) for k in requiredKeywords}
self.keywords["UNCERTAINTY"].naAllowed = False
self.keywords["REVISION"].naAllowed = False
"""An ICARTT variable description with name, units, scale and missing value."""
def desc(self, delimiter=DEFAULT_FIELD_DELIM):
"""Variable description string as it appears in an ICARTT file
:param delimiter: field delimiter character(s), defaults to DEFAULT_FIELD_DELIM
:type delimiter: str, optional
descstr = [str(self.shortname), str(self.units)]
descstr += [str(self.standardname)]
return delimiter.join(descstr)
Christoph Knote
committed
def isValidVariablename(self, name): # TODO: this could be a 'utils' function
# ICARTT Standard v2 2.1.1 2)
# Variable short names and variable standard names:
# Uppercase and lowercase ASCII alphanumeric characters
Christoph Knote
committed
def isAsciiAlphaOrUnderscore(x): # TODO: this could be a 'utils' function
return re.match("[a-zA-Z0-9_]", x)
Florian Obersteiner
committed
allAreAlphaOrUnderscore = all(isAsciiAlphaOrUnderscore(x) for x in name)
# The first character must be a letter,
firstIsAlpha = bool(re.match("[a-zA-Z]", name[0]))
# and the name can be at most 31 characters in length.
return allAreAlphaOrUnderscore and firstIsAlpha and lessThan31Chars
def __init__(
self,
shortname,
units,
standardname,
longname,
vartype=VariableType.DependentVariable,
scale=DEFAULT_SCALE_FACTOR,
miss=DEFAULT_MISSING_VALUE,
"""
:param shortname: Short name of the variable
:type shortname: str
:param units: Units of the variable
:type units: str
:param standardname: Standard name of the variable
:type standardname: str
:param longname: Long name of the variable
:type longname: str
:param vartype: Variable type (unbounded/bounded independent or dependent), defaults to `VariableType.dependentVariable`
:type vartype: VariableType, optional
:param scale: Scaling factor for the variable, defaults to DEFAULT_SCALE_FACTOR
:type scale: float, optional
:param miss: Missing value for the variable, defaults to DEFAULT_MISSING_VALUE
:type miss: float, optional
"""
if not self.isValidVariablename(shortname):
f"Variable short name {str(shortname)} does not comply with ICARTT standard v2"
self.shortname = shortname
self.units = units
self.standardname = standardname
self.longname = longname
self.vartype = vartype
self.scale = scale
self.miss = miss
def __repr__(self):
# TODO: this sould be something else than __str__ ?
return self.desc()
def __str__(self):
return self.desc()
"""An ICARTT dataset that can be created from scratch or read from a file,
"""Header line count
total = (
14
+ len(self.dependentVariables)
+ len(self.specialComments)
+ self.normalComments.nlines
)
total = (
16
+ 2
+ len(self.auxiliaryVariables)
+ len(self.dependentVariables)
+ len(self.specialComments)
+ self.normalComments.nlines
)
"""Time steps of the data
:return: array of time steps
if self.defineMode:
return np.datetime64("NaT")
# for 1001, its an array, for 2110 a dict
if not isinstance(self.data.data, (np.ndarray, dict)):
return np.datetime64("NaT")
# it is possible to have an empty dict
if isinstance(self.data.data, dict) and not self.data.data:
Christoph Knote
committed
return np.datetime64("NaT")
Christoph Knote
committed
ref_dt = np.datetime64(datetime.datetime(*self.dateOfCollection), "ns")
time_values = []
if self.format == Formats.FFI1001:
time_values = self.data[self.independentVariable.shortname]
elif self.format == Formats.FFI2110:
# for 2110, data keys are independent variable values by definition in out implementation
time_values = np.array(list(self.data.keys()))
else:
raise NotImplementedError(
"times method not implemented for this ICARTT format!"
)
# ivar unit is seconds as per standard; need to convert to ns to use timedelta64[ns] type.
return ref_dt + (time_values * 10**9).astype("timedelta64[ns]")
"""Variables (independent + dependent + auxiliary)
if self.independentVariable is not None:
variables[self.independentVariable.shortname] = self.independentVariable
if self.independentBoundedVariable is not None:
variables[
self.independentBoundedVariable.shortname
] = self.independentBoundedVariable
variables = {**variables, **self.dependentVariables, **self.auxiliaryVariables}
def readHeader(self, delimiter=DEFAULT_FIELD_DELIM):
"""Read the ICARTT header (from file)
:param delimiter: field delimiter character(s), defaults to DEFAULT_FIELD_DELIM
:type delimiter: str, optional
"""
Christoph Knote
committed
class FilehandleWithLinecounter: # TODO: this could be a 'utils' class
def __init__(self, f, delimiter):
self.f = f
self.line = 0
self.delimiter = delimiter
dmp = self.f.readline().replace("\n", "").replace("\r", "")
dmp = [word.strip(" ") for word in dmp.split(self.delimiter)]
if self.inputFhandle:
if self.inputFhandle.closed:
Christoph Knote
committed
self.inputFhandle = open(self.inputFhandle.name, encoding="utf-8")
f = FilehandleWithLinecounter(self.inputFhandle, delimiter)
self._readHeader(f)
self.inputFhandle.close()
# line 1 - Number of lines in header, file format index (most files use
# 1001) - comma delimited.
try:
self.format = Formats(int(dmp[1]))
except ValueError as ve:
raise NotImplementedError(f"ICARTT format {dmp[1]} not implemented") from ve
self.PIAffiliation = f.readline(doSplit=False)
# line 4 - Data source description (e.g., instrument name, platform name,
# model name, etc.).
self.dataSourceDescription = f.readline(doSplit=False)
self.missionName = f.readline(doSplit=False)
# line 6 - File volume number, number of file volumes (these integer values
# are used when the data require more than one file per day; for data that
# require only one file these values are set to 1, 1) - comma delimited.
self.fileVolumeNumber = int(dmp[0])
self.totalNumberOfFileVolumes = int(dmp[1])
# line 7 - UTC date when data begin, UTC date of data reduction or revision
# - comma delimited (yyyy, mm, dd, yyyy, mm, dd).
self.dateOfCollection = tuple(map(int, dmp[:3]))
self.dateOfRevision = tuple(map(int, dmp[3:6]))
# line 8 - Data Interval (This value describes the time spacing (in seconds)
# between consecutive data records. It is the (constant) interval between
# values of the independent variable. For 1 Hz data the data interval value
# is 1 and for 10 Hz data the value is 0.1. All intervals longer than 1
# second must be reported as Start and Stop times, and the Data Interval
# value is set to 0. The Mid-point time is required when it is not at the
# average of Start and Stop times. For additional information see Section
# 2.5 below.).
dmp = f.readline()
# might have multiple entries for 2110
self.dataIntervalCode = [float(x) for x in dmp]
# line 9 - Description or name of independent variable (This is the name
# chosen for the start time. It always refers to the number of seconds UTC
# from the start of the day on which measurements began. It should be noted
# here that the independent variable should monotonically increase even when
# crossing over to a second day.
Christoph Knote
committed
def extractVardesc(dmp): # TODO: could be a 'utils' function or one line,
shortname = dmp[
0
] # shortname, units, standardname, longname, *_ = dmp + [None] * 3
units = dmp[1]
standardname = dmp[2] if len(dmp) > 2 else None
longname = dmp[3] if len(dmp) > 3 else None
shortname, units, standardname, longname = extractVardesc(dmp)
self.independentBoundedVariable = Variable(
shortname,
units,
standardname,
longname,
vartype=VariableType.IndependentBoundedVariable,
)
shortname, units, standardname, longname = extractVardesc(dmp)
self.independentVariable = Variable(
shortname,
units,
standardname,
longname,
vartype=VariableType.IndependentVariable,
)
# line 10 - Number of variables (Integer value showing the number of
# dependent variables: the total number of columns of data is this value
# plus one.).
# line 11- Scale factors (1 for most cases, except where grossly
# inconvenient) - comma delimited.
vscale = [x for x in f.readline()]
# line 12 - Missing data indicators (This is -9999 (or -99999, etc.) for
# any missing data condition, except for the main time (independent)
# variable which is never missing) - comma delimited.
vmiss = [x for x in f.readline()]
# no float casting here, as we need to do string comparison lateron when reading data...
# line 13 - Variable names and units (Short variable name and units are
# required, and optional long descriptive name, in that order, and separated
# by commas. If the variable is unitless, enter the keyword "none" for its
# units. Each short variable name and units (and optional long name) are
# entered on one line. The short variable name must correspond exactly to
# the name used for that variable as a column header, i.e., the last header
# line prior to start of data.).
shortname, units, standardname, longname = extractVardesc(dmp)
vshortname = [shortname]
vunits = [units]
vstandardname = [standardname]
vlongname = [longname]
for _ in range(1, nvar):
shortname, units, standardname, longname = extractVardesc(dmp)
vshortname += [shortname]
vunits += [units]
vstandardname += [standardname]
vlongname += [longname]
d = {}
for shortname, unit, standardname, longname, scale, miss in zip(
Christoph Knote
committed
vshortname, vunits, vstandardname, vlongname, vscale, vmiss
):
shortname,
unit,
standardname,
longname,
scale=scale,
miss=miss,
vartype=vtype,
)
self.dependentVariables = readVars(f, VariableType.DependentVariable)
self.auxiliaryVariables = readVars(f, VariableType.AuxiliaryVariable)
# line 14 + nvar - Number of SPECIAL comment lines (Integer value
# indicating the number of lines of special comments, NOT including this
# line.).
# line 15 + nvar - Special comments (Notes of problems or special
# circumstances unique to this file. An example would be comments/problems
# associated with a particular flight.).
self.specialComments = [f.readline(doSplit=False) for _ in range(nscom)]
# line 16 + nvar + nscom - Number of Normal comments (i.e., number of
# additional lines of SUPPORTING information: Integer value indicating the
# number of lines of additional information, NOT including this line.).
# line 17 + nvar + nscom - Normal comments (SUPPORTING information: This is
# the place for investigators to more completely describe the data and
# measurement parameters. The supporting information structure is described
# below as a list of key word: value pairs. Specifically include here
# information on the platform used, the geo-location of data, measurement
# technique, and data revision comments. Note the non-optional information
# regarding uncertainty, the upper limit of detection (ULOD) and the lower
# limit of detection (LLOD) for each measured variable. The ULOD and LLOD
# are the values, in the same units as the measurements that correspond to
# the flags -7777's and -8888's within the data, respectively. The last line
# of this section should contain all the "short" variable names on one line.
# The key words in this section are written in BOLD below and must appear in
# this section of the header along with the relevant data listed after the
# colon. For key words where information is not needed or applicable, simply
# enter N/A.).
rawNcom = [f.readline(doSplit=False) for _ in range(nncom)]
if self.nHeader != nHeaderSuggested:
f"Number of header lines suggested in line 1 ({int(nHeaderSuggested)}) do not match actual header lines read ({int(self.nHeader)})"
def readData(self, delimiter=DEFAULT_FIELD_DELIM):
"""Read ICARTT data (from file)
:param delimiter: field delimiter character(s), defaults to DEFAULT_FIELD_DELIM
:type delimiter: str, optional
"""
if self.inputFhandle:
if self.inputFhandle.closed:
Christoph Knote
committed
self.inputFhandle = open(self.inputFhandle.name, encoding="utf-8")
Florian Obersteiner
committed
for _ in range(self.nHeaderFile):
self.inputFhandle.readline()
self.data.addFromTxt(self.inputFhandle, delimiter)
def read(self, delimiter=DEFAULT_FIELD_DELIM):
"""Read ICARTT data and header
:param delimiter: field delimiter character(s), defaults to DEFAULT_FIELD_DELIM
:type delimiter: str, optional
"""
self.readHeader(delimiter)
self.readData(delimiter)
def makeFileName(self, dateFormat="%Y%m%d"):
"""Create ICARTT-compliant file name based on the information contained in the dataset
:param dateFormat: date format to use when parsing, defaults to '%Y%m%d'
:type dateFormat: str, optional
"""
fn = (
self.dataID
+ "_"
+ self.locationID
+ "_"
Christoph Knote
committed
+ datetime.datetime.strftime(
datetime.datetime(*self.dateOfCollection), dateFormat
)
fn += "_R" + str(self.revision) if not self.revision is None else ""
fn += "_L" + str(self.launch) if not self.launch is None else ""
fn += (
"_V" + str(self.fileVolumeNumber)
if self.totalNumberOfFileVolumes > 1
else ""
)
Christoph Knote
committed
def isValidFileName(self, name): # TODO: this could be a 'utils' function
"""test whether file name complies with ICARTT standard:
ICARTT standard v2 2.1.1 3)
Filename: Uppercase and lowercase ASCII alphanumeric characters (i.e. A-Z, a-z, 0-9), underscore, period, and hyphen. File names can be a maximum 127 characters in length.
:param name: file name
:type name: str
:return: is file name valid according to ICARTT standard?
:rtype: bool
"""
Christoph Knote
committed
def isAsciiAlpha(x): # TODO: this could be a 'utils' function
return re.match("[a-zA-Z0-9-_.]", x)
allAsciiAlpha = all(isAsciiAlpha(x) for x in name)
lessThan128Characters = len(name) < 128
Christoph Knote
committed
return allAsciiAlpha and lessThan128Characters and name.endswith(".ict")
def writeHeader(self, f=sys.stdout, delimiter=DEFAULT_FIELD_DELIM):
:param f: `file object <https://docs.python.org/3/glossary.html#term-file-object>`_ to write to, defaults to sys.stdout
:type f: handle, optional
:param delimiter: field delimiter character(s) for output, defaults to DEFAULT_FIELD_DELIM
:type delimiter: str, optional
f.write(str(txt) + "\n")
# Number of lines in header, file format index (most files use 1001) - comma delimited.
versInfo = [self.nHeader, self.format.value]
if self.version is not None:
versInfo.append(self.version)
txt = delimiter.join([str(x) for x in versInfo])
# PI last name, first name/initial.
# Organization/affiliation of PI.
# Data source description (e.g., instrument name, platform name, model name, etc.).
write_to_file(self.dataSourceDescription)
# Mission name (usually the mission acronym).
# File volume number, number of file volumes (these integer values are used when the data require more than one file per day; for data that require only one file these values are set to 1, 1) - comma delimited.
delimiter.join(
[str(self.fileVolumeNumber), str(self.totalNumberOfFileVolumes)]
)
)
# UTC date when data begin, UTC date of data reduction or revision - comma delimited (yyyy, mm, dd, yyyy, mm, dd).
Christoph Knote
committed
delimiter.join(
f"{x:02d}" for x in (*self.dateOfCollection, *self.dateOfRevision)
)
# Data Interval (This value describes the time spacing (in seconds) between consecutive data records. It is the (constant) interval between values of the independent variable. For 1 Hz data the data interval value is 1 and for 10 Hz data the value is 0.1. All intervals longer than 1 second must be reported as Start and Stop times, and the Data Interval value is set to 0. The Mid-point time is required when it is not at the average of Start and Stop times. For additional information see Section 2.5 below.).
write_to_file(delimiter.join([str(x) for x in self.dataIntervalCode]))
if self.format == Formats.FFI2110:
# Description or name of independent (bound) variable (This is the name chosen for the start time. It always refers to the number of seconds UTC from the start of the day on which measurements began. It should be noted here that the independent variable should monotonically increase even when crossing over to a second day.).
write_to_file(self.independentBoundedVariable.desc(delimiter))
# Description or name of independent variable (This is the name chosen for the start time. It always refers to the number of seconds UTC from the start of the day on which measurements began. It should be noted here that the independent variable should monotonically increase even when crossing over to a second day.).
write_to_file(self.independentVariable.desc(delimiter))
# Number of variables (Integer value showing the number of dependent variables: the total number of columns of data is this value plus one.).
write_to_file(len(self.dependentVariables))
# Scale factors (1 for most cases, except where grossly inconvenient) - comma delimited.
delimiter.join(
[str(DVAR.scale) for DVAR in self.dependentVariables.values()]
)
)
# Missing data indicators (This is -9999 (or -99999, etc.) for any missing data condition, except for the main time (independent) variable which is never missing) - comma delimited.
delimiter.join(
[str(DVAR.miss) for DVAR in self.dependentVariables.values()]
)
)
# Variable names and units (Short variable name and units are required, and optional long descriptive name, in that order, and separated by commas. If the variable is unitless, enter the keyword "none" for its units. Each short variable name and units (and optional long name) are entered on one line. The short variable name must correspond exactly to the name used for that variable as a column header, i.e., the last header line prior to start of data.).
Florian Obersteiner
committed
for DVAR in self.dependentVariables.values():
write_to_file(DVAR.desc(delimiter))
if self.format == Formats.FFI2110:
# Number of variables (Integer value showing the number of dependent variables: the total number of columns of data is this value plus one.).
write_to_file(len(self.auxiliaryVariables))
# Scale factors (1 for most cases, except where grossly inconvenient) - comma delimited.
delimiter.join(
[str(AUXVAR.scale) for AUXVAR in self.auxiliaryVariables.values()]
)
)
# Missing data indicators (This is -9999 (or -99999, etc.) for any missing data condition, except for the main time (independent) variable which is never missing) - comma delimited.
delimiter.join(
[str(AUXVAR.miss) for AUXVAR in self.auxiliaryVariables.values()]
)
)
# Variable names and units (Short variable name and units are required, and optional long descriptive name, in that order, and separated by commas. If the variable is unitless, enter the keyword "none" for its units. Each short variable name and units (and optional long name) are entered on one line. The short variable name must correspond exactly to the name used for that variable as a column header, i.e., the last header line prior to start of data.).
Florian Obersteiner
committed
for AUXVAR in self.auxiliaryVariables.values():
write_to_file(AUXVAR.desc(delimiter))
Florian Obersteiner
committed
# Number of SPECIAL comment lines (Integer value indicating the number of lines of special comments, NOT including this line.).
write_to_file(f"{len(self.specialComments)}")
# Special comments (Notes of problems or special circumstances unique to this file. An example would be comments/problems associated with a particular flight.).
Florian Obersteiner
committed
for x in self.specialComments:
write_to_file(x)
# Number of Normal comments (i.e., number of additional lines of SUPPORTING information: Integer value indicating the number of lines of additional information, NOT including this line.).
write_to_file(f"{self.normalComments.nlines}")
# Normal comments (SUPPORTING information: This is the place for investigators to more completely describe the data and measurement parameters. The supporting information structure is described below as a list of key word: value pairs. Specifically include here information on the platform used, the geo-location of data, measurement technique, and data revision comments. Note the non-optional information regarding uncertainty, the upper limit of detection (ULOD) and the lower limit of detection (LLOD) for each measured variable. The ULOD and LLOD are the values, in the same units as the measurements that correspond to the flags -7777s and -8888s within the data, respectively. The last line of this section should contain all the short variable names on one line. The key words in this section are written in BOLD below and must appear in this section of the header along with the relevant data listed after the colon. For key words where information is not needed or applicable, simply enter N/A.).
# re-create last line out of actual data if missing...
Florian Obersteiner
committed
if not self.normalComments.shortnames:
self.normalComments.shortnames = delimiter.join(
[self.variables[x].shortname for x in self.variables]
)
Florian Obersteiner
committed
for x in self.normalComments:
write_to_file(x)
def writeData(
self, f=sys.stdout, fmt=DEFAULT_NUM_FORMAT, delimiter=DEFAULT_FIELD_DELIM
):
"""Write data
:param f: `file object <https://docs.python.org/3/glossary.html#term-file-object>`_ to write to, defaults to sys.stdout
:type f: handle, optional
:param fmt: format string for output, accepts anything :func:`numpy.savetxt` would, defaults to DEFAULT_NUM_FORMAT
:type fmt: str or sequence of str, optional
:param delimiter: field delimiter character(s), defaults to DEFAULT_FIELD_DELIM
:type delimiter: str, optional
if self.format == Formats.FFI1001:
self.data.write(f=f, fmt=fmt, delimiter=delimiter)
elif self.format == Formats.FFI2110:
self.data.write(
f=f,
fmt_aux=fmt,
delimiter_aux=delimiter,
fmt_dep=fmt,
delimiter_dep=delimiter,
)
else:
raise NotImplementedError("Unknown FFI!")
def write(
self, f=sys.stdout, fmt=DEFAULT_NUM_FORMAT, delimiter=DEFAULT_FIELD_DELIM
):
"""Write header and data
:param f: `file object <https://docs.python.org/3/glossary.html#term-file-object>`_ to write to, defaults to sys.stdout
:type f: handle, optional
:param fmt: format string for output, accepts anything :func:`numpy.savetxt` would, defaults to DEFAULT_NUM_FORMAT
:type fmt: str or sequence of str, optional
:param delimiter: field delimiter character(s), defaults to DEFAULT_FIELD_DELIM
:type delimiter: str, optional
self.writeHeader(f=f, delimiter=delimiter)
self.writeData(f=f, fmt=fmt, delimiter=delimiter)
"""Fixes the variables structure of the dataset. Sets up the data store,
so data can be added. Needs to be called after variable definition
self.data = DataStore1001(self.independentVariable, self.dependentVariables)
self.data = DataStore2110(
self.independentVariable,
self.independentBoundedVariable,
self.auxiliaryVariables,
self.dependentVariables,
)
if not self.inputFhandle.closed:
self.inputFhandle.close()
def __repr__(self):
# TODO: this could be more meaningful
return "icartt.Dataset()"
def __str__(self):
return f"ICARTT Dataset {self.makeFileName()}"
def __init__(
self,
f=None,
loadData=True,
delimiter=DEFAULT_FIELD_DELIM,
format=Formats.FFI1001,
):
"""
:param f: file path or file handle to use, defaults to None
:type f: str or `file object <https://docs.python.org/3/glossary.html#term-file-object>`_, optional
:param loadData: whether to load data as well (or only header if False), defaults to `True`
:type loadData: bool, optional
:param delimiter: field delimiter character(s), defaults to DEFAULT_FIELD_DELIM
:type delimiter: str, optional
:param format: ICARTT file format to create, defaults to 1001
:type format: Formats, optional
"""
self.format = format
self.version = None
self.dataID = "dataID"
self.locationID = "locationID"
self.revision = 0
self.launch = None
self.fileVolumeNumber = 1
self.totalNumberOfFileVolumes = 1
self.PIName = "Mustermann, Martin"
self.PIAffiliation = "Musterinstitut"
self.dataSourceDescription = "Musterdatenprodukt"
self.missionName = "MUSTEREX"
# .utcnow() should not be used in general, but it is ok if you just need the timetuple.
self.dateOfCollection = datetime.datetime.utcnow().timetuple()[:3]
self.dateOfRevision = datetime.datetime.utcnow().timetuple()[:3]