Newer
Older
Christoph Knote
committed
from ctypes import ArgumentError
Florian Obersteiner
committed
from enum import IntEnum
Florian Obersteiner
committed
DEFAULT_NUM_FORMAT = "%f"
DEFAULT_FIELD_DELIM = ", "
class Formats(IntEnum):
"""File Format Indices (FFI)"""
Christoph Knote
committed
IndependentVariable = 1
IndependentBoundedVariable = 2
AuxiliaryVariable = 3
DependentVariable = 4
def __init__(self, ivar, dvars):
self.varnames = [ivar.shortname] + [x for x in dvars]
Christoph Knote
committed
self.missingValues = {x: dvars[x].miss for x in dvars}
self.missingValues.update({self.ivarname: ivar.miss})
self.default_dtype = np.float64
self.dtypes = [(name, self.default_dtype) for name in self.varnames]
def __getitem__(self, s=slice(None)):
# we can only slice if we have something, so
if self.data is not None:
return self.data[s]
# returns None implicitly if self.data is None
Christoph Knote
committed
def addFromTxt(self, f, splitChar, max_rows=None):
# genfromtxt would warn if file is empty. We do not want that.
with warnings.catch_warnings():
warnings.simplefilter("ignore")
newData = np.genfromtxt(
f,
names=self.varnames,
dtype=self.dtypes,
missing_values=self.missingValues,
usemask=True,
delimiter=splitChar,
max_rows=max_rows,
deletechars="",
).filled(fill_value=np.nan)
self.add(newData)
def add(self, newData):
"""bulk add data, providing a (structured) numpy array.
Array has to have shape [ (ivar, dvar, dvar, ...), ... ],
missing values have to be set to np.nan.
:param newData: data to be added
:type newData: numpy.ndarray
"""
if not type(newData) is np.ndarray: # TODO: isinstance(arr, np.ndarray)?
Christoph Knote
committed
raise ArgumentError("Input data needs to be numpy ndarray.")
if newData.dtype.names is None:
try:
newData.dtype = [(name, newData.dtype) for name in self.varnames]
except:
ArgumentError(
"Could not assign names to data structure, are you providing an array containing all variables?"
)
Christoph Knote
committed
self.data = newData
Christoph Knote
committed
self.data = np.append(self.data, newData)
Christoph Knote
committed
for k, miss in self.missingValues.items():
def write(
self, f=sys.stdout, fmt=DEFAULT_NUM_FORMAT, delimiter=DEFAULT_FIELD_DELIM
):
Christoph Knote
committed
# single line data is 0D, savetxt cannot work with 0D. Make 1D.
if d.ndim == 0:
d = np.array( [ d ] )
np.savetxt(f, d, fmt=fmt, delimiter=delimiter)
class DataStore2110(collections.UserDict):
def __init__(self, ivar, ibvar, auxvars, dvars):
self.ivarname = ivar.shortname
self.ibvarname = ibvar.shortname
self.auxvarnames = [x for x in auxvars]
self.dvarnames = [x for x in dvars]
Christoph Knote
committed
self.missingValues = {x: dvars[x].miss for x in dvars}
self.missingValues.update({x: auxvars[x].miss for x in auxvars})
self.missingValues.update({self.ibvarname: ibvar.miss})
self.missingValues.update({self.ivarname: ivar.miss})
self.nauxvarname = self.auxvarnames[0] # convention!
self.ivar = ivar
self.auxvars = auxvars
self.ibvar = ibvar
self.dvars = dvars
def __getitem__(self, s=slice(None)):
# we can only slice if we have something, so
if self.data is not None:
return self.data[s]
# returns None implicitly if self.data is None
Christoph Knote
committed
def addFromTxt(self, f, splitChar):
while f:
auxds = DataStore1001(self.ivar, self.auxvars)
depds = DataStore1001(self.ibvar, self.dvars)
try:
auxds.addFromTxt(f, splitChar, max_rows=1)
except:
# we are at the end of the file if this happens
break
Christoph Knote
committed
ndeprows = int( auxds[self.nauxvarname] )
Christoph Knote
committed
try:
depds.addFromTxt(f, splitChar, max_rows=ndeprows)
except:
break
Christoph Knote
committed
ivarValue = float(auxds[self.ivar.shortname])
Christoph Knote
committed
self.data[ivarValue] = { "AUX": auxds, "DEP": depds }
Christoph Knote
committed
def add(self, newAuxData, newDepData):
auxds = DataStore1001(self.ivar, self.auxvars)
depds = DataStore1001(self.ibvar, self.dvars)
Christoph Knote
committed
auxds.add(newAuxData)
depds.add(newDepData)
Christoph Knote
committed
ivarValue = float(auxds[self.ivar.shortname])
Christoph Knote
committed
self.data[ivarValue] = { "AUX": auxds, "DEP": depds }
def write(
self, f=sys.stdout, fmt=DEFAULT_NUM_FORMAT, delimiter=DEFAULT_FIELD_DELIM
):
for ivarvalue in self.data:
self.data[ivarvalue]["AUX"].write(f, fmt=fmt, delimiter=delimiter)
self.data[ivarvalue]["DEP"].write(f, fmt=fmt, delimiter=delimiter)
class KeywordComment:
self.key = key
self.naAllowed = naAllowed
self.data = []
def append(self, data):
self.data.append(data)
return self.key + ": " + d
"""calculates the number of lines in the normal comments section"""
Christoph Knote
committed
n = 1 # shortnames line
n += len(self.freeform) # freeform comment
for k in self.keywords.values():
try:
Christoph Knote
committed
n += len(k.data[0].split("\n")) # and keywords might be multiline...
except IndexError: # ok we have no list,
n += 1 # just add 1
return (
self.freeform + [str(s) for s in self.keywords.values()] + [self.shortnames]
)
def ingest(self, raw):
# last line is always shortname
self.shortnames = raw.pop()
# per standard: The free-form text section consists of the lines
# between the beginning of the normal comments section
# and the first required keyword. [...] The required “KEYWORD: value” pairs block
# starts with the line that begins with the first required keyword
# and must include all required “KEYWORD: value” pairs
# in the order listed in the ICARTT documentation.
if possibleKeyword in self.keywords or re.match(
"R[a-zA-Z0-9]{1,2}[ ]*", possibleKeyword
):
if not currentKeyword in self.keywords: # for the revisions only...
self.keywords[currentKeyword] = KeywordComment(
currentKeyword, False
)
self.keywords[currentKeyword].append(
l.replace(l.split(":")[0] + ":", "").strip()
)
for key in self.keywords:
if self.keywords[key].data == []:
f"Normal comments: required keyword {str(key)} is missing."
"PI_CONTACT_INFO",
"PLATFORM",
"LOCATION",
"ASSOCIATED_DATA",
"INSTRUMENT_INFO",
"DATA_INFO",
"UNCERTAINTY",
"ULOD_FLAG",
"ULOD_VALUE",
"LLOD_FLAG",
"LLOD_VALUE",
"DM_CONTACT_INFO",
"PROJECT_INFO",
"STIPULATIONS_ON_USE",
"OTHER_COMMENTS",
self.keywords = {k: KeywordComment(k, True) for k in requiredKeywords}
self.keywords["UNCERTAINTY"].naAllowed = False
self.keywords["REVISION"].naAllowed = False
"""An ICARTT variable description with name, units, scale and missing value.
:param shortname: Short name of the variable
:type shortname: str
:param units: Units of the variable
:type units: str
:param standardname: Standard name of the variable
:type standardname: str
:param longname: Long name of the variable
:type longname: str
:param vartype: Variable type (unbounded/bounded independent or dependent)
:type vartype: enum:`icartt.Formats`, defaults to VariableType.dependentVariable
:param scale: Scaling factor for the variable
:type scale: float, defaults to 1.0
:param miss: Missing value for the variable
:type miss: float, defaults to -99999.0
def desc(self, splitChar=", "):
"""Variable description string as it appears in an ICARTT file
:return: description string
:rtype: str
descstr = [str(self.shortname), str(self.units)]
descstr += [str(self.standardname)]
Christoph Knote
committed
def isValidVariablename(self, name): # TODO: this could be a 'utils' function
# ICARTT Standard v2 2.1.1 2)
# Variable short names and variable standard names:
# Uppercase and lowercase ASCII alphanumeric characters
Christoph Knote
committed
def isAsciiAlphaOrUnderscore(x): # TODO: this could be a 'utils' function
return re.match("[a-zA-Z0-9_]", x)
Florian Obersteiner
committed
allAreAlphaOrUnderscore = all(isAsciiAlphaOrUnderscore(x) for x in name)
# The first character must be a letter,
firstIsAlpha = bool(re.match("[a-zA-Z]", name[0]))
# and the name can be at most 31 characters in length.
return allAreAlphaOrUnderscore and firstIsAlpha and lessThan31Chars
def __init__(
self,
shortname,
units,
standardname,
longname,
vartype=VariableType.DependentVariable,
scale=1.0,
miss=-99999.0,
):
"""Constructor method"""
if not self.isValidVariablename(shortname):
f"Variable short name {str(shortname)} does not comply with ICARTT standard v2"
self.shortname = shortname
self.units = units
self.standardname = standardname
self.longname = longname
self.vartype = vartype
self.scale = scale
self.miss = miss
def __repr__(self):
# TODO: this sould be something else than __str__ ?
return self.desc()
def __str__(self):
return self.desc()
"""An ICARTT dataset that can be created from scratch or read from a file,
:param f: file path or file handle to use
:type f: str or file handle or stream object, defaults to None
:param loadData: load data as well (or only header if False)?
:type loadData: bool, defaults to "True"
:param splitChar: splitting character used to separate fields in a line
:type splitChar: str, defaults to ","
"""Header line count
total = (
14
+ len(self.dependentVariables)
+ len(self.specialComments)
+ self.normalComments.nlines
)
total = (
16
+ 2
+ len(self.auxiliaryVariables)
+ len(self.dependentVariables)
+ len(self.specialComments)
+ self.normalComments.nlines
)
"""Time steps of the data
:return: numpy array of time steps
:rtype: numpy.ndarray
if self.data.data is None or self.independentVariable is None:
Christoph Knote
committed
return np.datetime64("NaT")
Christoph Knote
committed
ref_dt = np.datetime64(datetime.datetime(*self.dateOfCollection), "ns")
# ivar unit is seconds as per standard; need to convert to ns to use timedelta64[ns] type.
Christoph Knote
committed
return ref_dt + (
self.data[self.independentVariable.shortname] * 10**9
).astype("timedelta64[ns]")
"""Variables (independent + dependent + auxiliary)
:return: dictionary of all variables
:rtype: dict of Variable(s)
variables = {}
if self.independentVariable is not None:
variables[self.independentVariable.shortname] = self.independentVariable
if self.independentBoundedVariable is not None:
variables[
self.independentBoundedVariable.shortname
] = self.independentBoundedVariable
variables = {**variables, **self.dependentVariables, **self.auxiliaryVariables}
"""Read the ICARTT header (from file)"""
Christoph Knote
committed
class FilehandleWithLinecounter: # TODO: this could be a 'utils' class
self.f = f
self.line = 0
dmp = self.f.readline().replace("\n", "").replace("\r", "")
dmp = [word.strip(" ") for word in dmp.split(self.splitChar)]
if self.inputFhandle:
if self.inputFhandle.closed:
Christoph Knote
committed
self.inputFhandle = open(self.inputFhandle.name, encoding="utf-8")
f = FilehandleWithLinecounter(self.inputFhandle, splitChar)
self._readHeader(f)
self.inputFhandle.close()
# line 1 - Number of lines in header, file format index (most files use
# 1001) - comma delimited.
try:
self.format = Formats(int(dmp[1]))
except ValueError as ve:
raise NotImplementedError(f"ICARTT format {dmp[1]} not implemented") from ve
self.PIAffiliation = f.readline(doSplit=False)
# line 4 - Data source description (e.g., instrument name, platform name,
# model name, etc.).
self.dataSourceDescription = f.readline(doSplit=False)
self.missionName = f.readline(doSplit=False)
# line 6 - File volume number, number of file volumes (these integer values
# are used when the data require more than one file per day; for data that
# require only one file these values are set to 1, 1) - comma delimited.
self.fileVolumeNumber = int(dmp[0])
self.totalNumberOfFileVolumes = int(dmp[1])
# line 7 - UTC date when data begin, UTC date of data reduction or revision
# - comma delimited (yyyy, mm, dd, yyyy, mm, dd).
self.dateOfCollection = tuple(map(int, dmp[:3]))
self.dateOfRevision = tuple(map(int, dmp[3:6]))
# line 8 - Data Interval (This value describes the time spacing (in seconds)
# between consecutive data records. It is the (constant) interval between
# values of the independent variable. For 1 Hz data the data interval value
# is 1 and for 10 Hz data the value is 0.1. All intervals longer than 1
# second must be reported as Start and Stop times, and the Data Interval
# value is set to 0. The Mid-point time is required when it is not at the
# average of Start and Stop times. For additional information see Section
# 2.5 below.).
dmp = f.readline()
# might have multiple entries for 2110
self.dataIntervalCode = [float(x) for x in dmp]
# line 9 - Description or name of independent variable (This is the name
# chosen for the start time. It always refers to the number of seconds UTC
# from the start of the day on which measurements began. It should be noted
# here that the independent variable should monotonically increase even when
# crossing over to a second day.
Christoph Knote
committed
def extractVardesc(dmp): # TODO: could be a 'utils' function or one line,
shortname = dmp[
0
] # shortname, units, standardname, longname, *_ = dmp + [None] * 3
units = dmp[1]
standardname = dmp[2] if len(dmp) > 2 else None
longname = dmp[3] if len(dmp) > 3 else None
shortname, units, standardname, longname = extractVardesc(dmp)
self.independentBoundedVariable = Variable(
shortname,
units,
standardname,
longname,
vartype=VariableType.IndependentBoundedVariable,
)
shortname, units, standardname, longname = extractVardesc(dmp)
self.independentVariable = Variable(
shortname,
units,
standardname,
longname,
vartype=VariableType.IndependentVariable,
)
# line 10 - Number of variables (Integer value showing the number of
# dependent variables: the total number of columns of data is this value
# plus one.).
# line 11- Scale factors (1 for most cases, except where grossly
# inconvenient) - comma delimited.
vscale = [x for x in f.readline()]
# line 12 - Missing data indicators (This is -9999 (or -99999, etc.) for
# any missing data condition, except for the main time (independent)
# variable which is never missing) - comma delimited.
vmiss = [x for x in f.readline()]
# no float casting here, as we need to do string comparison lateron when reading data...
# line 13 - Variable names and units (Short variable name and units are
# required, and optional long descriptive name, in that order, and separated
# by commas. If the variable is unitless, enter the keyword "none" for its
# units. Each short variable name and units (and optional long name) are
# entered on one line. The short variable name must correspond exactly to
# the name used for that variable as a column header, i.e., the last header
# line prior to start of data.).
shortname, units, standardname, longname = extractVardesc(dmp)
vshortname = [shortname]
vunits = [units]
vstandardname = [standardname]
vlongname = [longname]
for _ in range(1, nvar):
shortname, units, standardname, longname = extractVardesc(dmp)
vshortname += [shortname]
vunits += [units]
vstandardname += [standardname]
vlongname += [longname]
d = {}
for shortname, unit, standardname, longname, scale, miss in zip(
Christoph Knote
committed
vshortname, vunits, vstandardname, vlongname, vscale, vmiss
):
shortname,
unit,
standardname,
longname,
scale=scale,
miss=miss,
vartype=vtype,
)
self.dependentVariables = readVars(f, VariableType.DependentVariable)
self.auxiliaryVariables = readVars(f, VariableType.AuxiliaryVariable)
# line 14 + nvar - Number of SPECIAL comment lines (Integer value
# indicating the number of lines of special comments, NOT including this
# line.).
# line 15 + nvar - Special comments (Notes of problems or special
# circumstances unique to this file. An example would be comments/problems
# associated with a particular flight.).
self.specialComments = [f.readline(doSplit=False) for _ in range(nscom)]
# line 16 + nvar + nscom - Number of Normal comments (i.e., number of
# additional lines of SUPPORTING information: Integer value indicating the
# number of lines of additional information, NOT including this line.).
# line 17 + nvar + nscom - Normal comments (SUPPORTING information: This is
# the place for investigators to more completely describe the data and
# measurement parameters. The supporting information structure is described
# below as a list of key word: value pairs. Specifically include here
# information on the platform used, the geo-location of data, measurement
# technique, and data revision comments. Note the non-optional information
# regarding uncertainty, the upper limit of detection (ULOD) and the lower
# limit of detection (LLOD) for each measured variable. The ULOD and LLOD
# are the values, in the same units as the measurements that correspond to
# the flags -7777's and -8888's within the data, respectively. The last line
# of this section should contain all the "short" variable names on one line.
# The key words in this section are written in BOLD below and must appear in
# this section of the header along with the relevant data listed after the
# colon. For key words where information is not needed or applicable, simply
# enter N/A.).
rawNcom = [f.readline(doSplit=False) for _ in range(nncom)]
if self.nHeader != nHeaderSuggested:
f"Number of header lines suggested in line 1 ({int(nHeaderSuggested)}) do not match actual header lines read ({int(self.nHeader)})"
"""Read ICARTT data (from file)"""
if self.inputFhandle:
if self.inputFhandle.closed:
Christoph Knote
committed
self.inputFhandle = open(self.inputFhandle.name, encoding="utf-8")
Florian Obersteiner
committed
for _ in range(self.nHeaderFile):
self.inputFhandle.readline()
Christoph Knote
committed
self.data.addFromTxt(self.inputFhandle, splitChar)
"""Read ICARTT data and header"""
def makeFileName(self, dateFormat="%Y%m%d"):
"""Create ICARTT-compliant file name based on the information contained in the dataset
:param dateFormat: date format to use when parsing
:type dateFormat: str, defaults to '%Y%m%d'
:return: file name generated
:rtype: string
"""
fn = (
self.dataID
+ "_"
+ self.locationID
+ "_"
Christoph Knote
committed
+ datetime.datetime.strftime(
datetime.datetime(*self.dateOfCollection), dateFormat
)
fn += "_R" + str(self.revision) if not self.revision is None else ""
fn += "_L" + str(self.launch) if not self.launch is None else ""
fn += (
"_V" + str(self.fileVolumeNumber)
if self.totalNumberOfFileVolumes > 1
else ""
)
Christoph Knote
committed
def isValidFileName(self, name): # TODO: this could be a 'utils' function
# ICARTT standard v2 2.1.1 3)
# Filename: Uppercase and lowercase ASCII alphanumeric
# characters (i.e. A-Z, a-z, 0-9), underscore, period,
# and hyphen. File names can be a maximum 127
# characters in length.
Christoph Knote
committed
def isAsciiAlpha(x): # TODO: this could be a 'utils' function
return re.match("[a-zA-Z0-9-_.]", x)
allAsciiAlpha = all(isAsciiAlpha(x) for x in name)
lessThan128Characters = len(name) < 128
Christoph Knote
committed
return allAsciiAlpha and lessThan128Characters and name.endswith(".ict")
def writeHeader(self, f=sys.stdout, delimiter=DEFAULT_FIELD_DELIM):
:param f: handle to write to
:type f: file handle or StringIO stream, defaults to sys.stdout
f.write(str(txt) + "\n")
# Number of lines in header, file format index (most files use 1001) - comma delimited.
versInfo = [self.nHeader, self.format.value]
if self.version is not None:
versInfo.append(self.version)
txt = delimiter.join([str(x) for x in versInfo])
# PI last name, first name/initial.
# Organization/affiliation of PI.
# Data source description (e.g., instrument name, platform name, model name, etc.).
write_to_file(self.dataSourceDescription)
# Mission name (usually the mission acronym).
# File volume number, number of file volumes (these integer values are used when the data require more than one file per day; for data that require only one file these values are set to 1, 1) - comma delimited.
delimiter.join(
[str(self.fileVolumeNumber), str(self.totalNumberOfFileVolumes)]
)
)
# UTC date when data begin, UTC date of data reduction or revision - comma delimited (yyyy, mm, dd, yyyy, mm, dd).
Christoph Knote
committed
delimiter.join(
f"{x:02d}" for x in (*self.dateOfCollection, *self.dateOfRevision)
)
# Data Interval (This value describes the time spacing (in seconds) between consecutive data records. It is the (constant) interval between values of the independent variable. For 1 Hz data the data interval value is 1 and for 10 Hz data the value is 0.1. All intervals longer than 1 second must be reported as Start and Stop times, and the Data Interval value is set to 0. The Mid-point time is required when it is not at the average of Start and Stop times. For additional information see Section 2.5 below.).
write_to_file(delimiter.join([str(x) for x in self.dataIntervalCode]))
if self.format == Formats.FFI2110:
# Description or name of independent (bound) variable (This is the name chosen for the start time. It always refers to the number of seconds UTC from the start of the day on which measurements began. It should be noted here that the independent variable should monotonically increase even when crossing over to a second day.).
write_to_file(self.independentBoundedVariable.desc(delimiter))
# Description or name of independent variable (This is the name chosen for the start time. It always refers to the number of seconds UTC from the start of the day on which measurements began. It should be noted here that the independent variable should monotonically increase even when crossing over to a second day.).
write_to_file(self.independentVariable.desc(delimiter))
# Number of variables (Integer value showing the number of dependent variables: the total number of columns of data is this value plus one.).
write_to_file(len(self.dependentVariables))
# Scale factors (1 for most cases, except where grossly inconvenient) - comma delimited.
delimiter.join(
[str(DVAR.scale) for DVAR in self.dependentVariables.values()]
)
)
# Missing data indicators (This is -9999 (or -99999, etc.) for any missing data condition, except for the main time (independent) variable which is never missing) - comma delimited.
delimiter.join(
[str(DVAR.miss) for DVAR in self.dependentVariables.values()]
)
)
# Variable names and units (Short variable name and units are required, and optional long descriptive name, in that order, and separated by commas. If the variable is unitless, enter the keyword "none" for its units. Each short variable name and units (and optional long name) are entered on one line. The short variable name must correspond exactly to the name used for that variable as a column header, i.e., the last header line prior to start of data.).
Florian Obersteiner
committed
for DVAR in self.dependentVariables.values():
write_to_file(DVAR.desc(delimiter))
if self.format == Formats.FFI2110:
# Number of variables (Integer value showing the number of dependent variables: the total number of columns of data is this value plus one.).
write_to_file(len(self.auxiliaryVariables))
# Scale factors (1 for most cases, except where grossly inconvenient) - comma delimited.
delimiter.join(
[str(AUXVAR.scale) for AUXVAR in self.auxiliaryVariables.values()]
)
)
# Missing data indicators (This is -9999 (or -99999, etc.) for any missing data condition, except for the main time (independent) variable which is never missing) - comma delimited.
delimiter.join(
[str(AUXVAR.miss) for AUXVAR in self.auxiliaryVariables.values()]
)
)
# Variable names and units (Short variable name and units are required, and optional long descriptive name, in that order, and separated by commas. If the variable is unitless, enter the keyword "none" for its units. Each short variable name and units (and optional long name) are entered on one line. The short variable name must correspond exactly to the name used for that variable as a column header, i.e., the last header line prior to start of data.).
Florian Obersteiner
committed
for AUXVAR in self.auxiliaryVariables.values():
write_to_file(AUXVAR.desc(delimiter))
Florian Obersteiner
committed
# Number of SPECIAL comment lines (Integer value indicating the number of lines of special comments, NOT including this line.).
write_to_file(f"{len(self.specialComments)}")
# Special comments (Notes of problems or special circumstances unique to this file. An example would be comments/problems associated with a particular flight.).
Florian Obersteiner
committed
for x in self.specialComments:
write_to_file(x)
# Number of Normal comments (i.e., number of additional lines of SUPPORTING information: Integer value indicating the number of lines of additional information, NOT including this line.).
write_to_file(f"{self.normalComments.nlines}")
# Normal comments (SUPPORTING information: This is the place for investigators to more completely describe the data and measurement parameters. The supporting information structure is described below as a list of key word: value pairs. Specifically include here information on the platform used, the geo-location of data, measurement technique, and data revision comments. Note the non-optional information regarding uncertainty, the upper limit of detection (ULOD) and the lower limit of detection (LLOD) for each measured variable. The ULOD and LLOD are the values, in the same units as the measurements that correspond to the flags -7777s and -8888s within the data, respectively. The last line of this section should contain all the short variable names on one line. The key words in this section are written in BOLD below and must appear in this section of the header along with the relevant data listed after the colon. For key words where information is not needed or applicable, simply enter N/A.).
# re-create last line out of actual data if missing...
Florian Obersteiner
committed
if not self.normalComments.shortnames:
self.normalComments.shortnames = delimiter.join(
[self.variables[x].shortname for x in self.variables]
)
Florian Obersteiner
committed
for x in self.normalComments:
write_to_file(x)
def writeData(
self, f=sys.stdout, fmt=DEFAULT_NUM_FORMAT, delimiter=DEFAULT_FIELD_DELIM
):
"""Write data
:param f: handle to write to
:type f: file handle or StringIO stream, defaults to sys.stdout
self.data.write(f=f, fmt=fmt, delimiter=delimiter)
def write(
self, f=sys.stdout, fmt=DEFAULT_NUM_FORMAT, delimiter=DEFAULT_FIELD_DELIM
):
"""Write header and data
:param f: handle to write to
:type f: file handle or StringIO stream, defaults to sys.stdout
self.writeHeader(f=f, delimiter=delimiter)
self.writeData(f=f, fmt=fmt, delimiter=delimiter)
"""Fixes the variables structure of the dataset. Sets up the data store,
so data can be added. Needs to be called after variable definition
self.data = DataStore1001(self.independentVariable, self.dependentVariables)
self.data = DataStore2110(
self.independentVariable,
self.independentBoundedVariable,
self.auxiliaryVariables,
self.dependentVariables,
)
if not self.inputFhandle.closed:
self.inputFhandle.close()
def __repr__(self):
# TODO: this could be more meaningful
return "ICARTT Dataset object repr"
def __str__(self):
# TODO: this could be more meaningful
return "ICARTT Dataset string representation"
def __init__(self, f=None, loadData=True, splitChar=",", format=Formats.FFI1001):
"""Constructor method"""
self.format = format
self.version = None
self.dataID = "dataID"
self.locationID = "locationID"
self.revision = 0
self.launch = None
self.fileVolumeNumber = 1
self.totalNumberOfFileVolumes = 1
self.PIName = "Mustermann, Martin"
self.PIAffiliation = "Musterinstitut"
self.dataSourceDescription = "Musterdatenprodukt"
self.missionName = "MUSTEREX"
# .utcnow() should not be used in general, but it is ok if you just need the timetuple.
self.dateOfCollection = datetime.datetime.utcnow().timetuple()[:3]
self.dateOfRevision = datetime.datetime.utcnow().timetuple()[:3]
self.independentVariable = None
self.independentBoundedVariable = None
self.auxiliaryVariables = {}
self.dependentVariables = {}
self.specialComments = []
self.normalComments = StandardNormalComments()
# Standard v2.0 for normal comments requires all keywords present,
# might not be the case - then reading data will fail
if isinstance(f, (str, pathlib.Path)):
Christoph Knote
committed
self.inputFhandle = open(f, "r", encoding="utf-8")
if not self.isValidFileName(pathlib.Path(f).name):
warnings.warn(f"{pathlib.Path(f).name} is not a valid ICARTT filename")